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Here, we describe FOCUS, a set of visualization
tools that display protein sequences and
structures with amino acids colored depending on
the respective codon frequency. We approximate
the rate of translation by constructing codon usage
tables from the open reading frames of genomes
deposited in the NCBI GenBank, then applying the
global and relative codon frequencies to a gene of
interest. We hypothesize that the constructed
codon usage tables, when normalized by relative
codon bias, can serve as a proxy for the
abundance of each amino-acyl tRNA in the cell.
Using these tools, we show that the selection of
high and low frequency codons appear to be

Throughout our work on this project, the
correlation between codon frequency and protein
structure has become increasingly clear. While
there appears to be some conservation of rare
codons in the MSA (Fig. 1), there is a lot of noise,
and the link between codon frequency and
structure is not apparent. This is due to the
methods the sequence alignments use, not fully
taking into consideration the 2D and 3D structures
of the proteins being aligned. With this in mind, we
look towards structural models to shine light upon
the underlying mechanism that governs the
conservation of codon frequencies.

In each crystal structure (Fig. 2), the rare
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frequency plays a vital role in protein folding, and areas across these three organisms. Many rare codons appear around loop regions and around B-strands. Many alpha helices have rare codons embedded

thus has broad implications in drug discovery, within the helix, and therefore we concluded that

amyloid diseases, protein structure prediction, and Eccherichia coli there must be something more to it that we are
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The conjoining factor between the codons and
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tRNA to come by the ribosome during translation
than a high frequency codon because of their
relative concentrations in the cell. We aim to show
that the positioning of low frequency codons is
strategic, and that there is evolutionary pressure

Furthermore, we plan to incorporate this work into
a molecular dynamics simulation of protein folding
to gain a more fundamental understanding of the
mechanism central to our understanding of life.
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